Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ДНК. Строение и структура ДНК. Свойства ДНК.




В 1953 г Джеймс Уотсон и Френсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДН К, пришли к выводу, что ее молекула состоит из двух полимерных цепей, образующих двойную спираль, ДНК - это полинуклеотид, сложенный из отдельных кирпичиков мононуклеотидов. В состав мононуклеотидов входят нуклеозиды, соединенные остатками фосфорной кислоты. Каждый нуклеозид представляет собой одно из четырех азотистых оснований (аденин, тимин, гуанин, или цитозин), соединенное с остатком дезоксирибозы.

В молекуле ДНК присутствуют нуклеотиды четырех типов: дезоксиаденозин монофосфат (dAMP), дезоксигуанозинмонофосфат (dGMP), дезокситимидинмонофосфат(dТМР),дезоксицитадинмонофосфат(с!СМР). Номенклатура азотистых оснований, нуклеозидов и мононуклеотидов молекулы ДНК представлена в таблице.

ДНК имеет форму спирали, в которой основания разных цепей связаны между собой водородными связями. Цепи ДНК способны разделяться с помощью специальных ферментов и служить матрицами при синтезе дочерних молекул. Важнейшее свойство ДНК — комплементарность ее цепей. Это означает, что против аденина в одной из цепей всегда стоит тимин в другой цепи, гуанин всегда соединен с цитозином. Комплементарные пары аденин и тимин соединены двумя водородными связями, а гуанин с цитозином тремя водородными связями.

По наблюдению Эрвина Чаргаффа, сделанному им в 1951 г., относительные количества комплементарных пар оснований в молекуле ДНК равны, т.е. А = Т, G = С (правило Чаргаффа). Несмотря на это равенство, между разными видами организмов наблюдается значительное различие по отношению (А + T)/(G+C). Что касается индивидуальной изменчивости, то она основана на различиях в последовательности оснований в кодирующих и особенно в некодируюших участках генома.

Помимо водородных связей между основаниями разных цепей стабильность двойной спирали ДНК обеспечивают гликозидные связи между азотистыми основаниями и остатками дезоксирибозы, а также фосфодиэфирные связи между двумя соседними остатками дезоксирибозы.

ДНК может существовать в виде нескольких форм, различающихся числом пар оснований на виток, утлом вращения между соседними парами оснований, расстоянием между парами оснований и диаметром спирали. В условиях in vivo наиболее частой является праюсторонняя В-форма, в которой одна цепь повернута вокруг другой по часовой стрелке. Имеется также и левосторонняя Z-форма.

Какие же из перечисленных выше структурных и функциональных особенностей молекулы ДНК позволяют ей хранить и передавать наследственную информации от клетки к клетке, от поколения к поколению, обеспечивать новые комбинации признаков у потомства?

1. Стабильность. Она обеспечивается водородными, гликозидными и фосфодиэфирными связями, а также механизмом репарации спонтанных и индуцированных повреждений;

2. Способность к репликации. Благодаря этому механизму в соматических клетках сохраняется диплоидное число хромосом. Схематично псе перечисленные особенности ДНК как генетической молекулы изображены на рисунке.

3. Наличие генетического кода. Последовательность оснований в ДНК с помощью процессов транскрипции и трансляции преобразуется в последовательность аминокислот в полипептидной цепи;
4. Способность к генетической рекомбинации. Благодаря этому механизму образуются новые сочетания сцепленных генов.


Строение и функции РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3'-концу акцепторного стебля.Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке.Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и свойства нуклеиновых кислот

Нуклеиновые кис­лоты открыты И. Мишером еще в 1870 г., Нук­леиновые кислоты обеспечивают про­цессы синтеза белка, закономерности роста и раз­вития, явления наследственности и из­менчивости. Нарушения в структуре нуклеиновых кислот влекут за собой патологические состояния.

В состав нуклеиновых кислот вхо­дят углерод, кислород, водород, азот и фосфор. Известны две группы этих кислот —РНК и ДНК. Они отличаются химическим строением и биологиче­скими свойствами.

ДНК и РНК в клетке имеют различную локализацию. ДНК нахо­дится преимущественно в ядре, входит в состав хроматина, сосредоточена в хромосомах. ДНК также входит в состав органоидов цито­плазмы; митохондрий, центросом и пластид. Основные хранители РНК — ядрышки, ри-босомы, расположенные в цитоплаз­ме. Нуклеиновые кислоты представляют собой биополимеры, мономерами ко­торых служат нуклеотиды. В каждый нуклеотид входит молекула фосфор­ной кислоты, моносахарида (рибозы или дезоксирибозы) и одно из четырех азотистых оснований: аденин (А), гуа­нин (Г), цитозин (Ц) и тимин (Т) или урацил (У).

РНК содержит моносахарид рибозу В состав ДНК входит мо­носахарид дезоксирибоза Азотистые основания аденин, гуанин и цитозин могут входить в состав как одной, так и другой кислоты, но тимин входит в состав только ДНК, а ура­цил — только РНК. Основная биологическая функция ДНК заключается в хранении, по­стоянном самовозобновлении, самовос­произведении (репликации) и пере­даче генетической (наследственной) информации в клетке.

Биологическая роль РНК связана преимущественно с синтезом белка, т. е. с реализацией наследственной ин­формации. Именно РНК является посредником между ДНК и строящей­ся в клетке белковой молекулой

ДНК. Способность ДНК к авторе­продукции и способность ее быть носи-, телем наследственной информации свя­заны с особенностью ее строения. С по­мощью рентгеноструктурного анализа показано, что молекула ДНК состоит из двух спирально закрученных нитей

Азотистое основание одной нити ДНК связано водородным «мостиком» с основанием другой, причем так, что аденин может быть связан толь­ко с тимином, а цитозин — только с гуанином. Они комплементарны (дополнительны) друг другу. Именно на этом основано свойство ДНК, объясняющее ее важную биологиче­скую роль: способность к самовоспро­изведению, т. е. к авторепродукции. Авторепродукция молекул ДНК про­исходит под воздействием фермента полимеразы. Предполагается, что при этом комплементарные цепи молекул ДНК раскручиваются и расходятся. Затем каждая из них начинает синте­зировать новую. Поскольку каждое из

оснований в нуклеотидах может при­соединить другой нуклеотид только строго определенного строения, про­исходит точное воспроизведение мате­ринской молекулы. Этим объясня­ется передача наследственной информа­ции от клетки, из поколения в поко­ление.

РНК не имеет двойной спирали и построена подобно одной из цепей ДНК. Если содержание ДНК в клетке характеризуется постоянством, то со­держание РНК сильно колеблется, особенно много ее в клетках с интен­сивным синтезом белка.

Различают три вида РНК1, рибосомальную, информационную и тран­спортную. Рибосомальная (рРНК) об­ладает наиболее крупными молеку­лами, включающими в себя до 3000 — 5000 нуклеотидов. Входит она в со­став рибосом. на ее долю приходится до 90 %. роль в инициации, окончании синтеза и отщеплении го­товых молекул белка от рибосом.

Информационная (иРНК) несет в себе генетическую информацию для построения белка. Моле­кула иРНК состоит из триплетов (ко-донов). 1 %.

Информационная РНК существует в двух фракциях: в виде зрелой иРНК и в виде ее предшественника Обе фракции растворены в цитоплаз­ме, где и происходит созревание.

Молекулы транспортной (тРНК) наиболее короткие: состоят из 70 — 100 нуклеотидов и имеют наиболее низкую относительную молекулярную массу. тРНК находится в цитоплазме. Ее функция — транспорт аминокислот к рибосомам Для каждой аминокислоты существует свой тип тРНК. На одном из концов молекулы тРНК имеется участок, к которому прикрепляется определенная аминокислота, на дру­гом конце — участок, в котором рас­полагается триплет свободных азо­тистых оснований (антикодон).

Чаргафф вывел 3 правила 1) сумма А= сумме Т, сумма Г= сумме Ц 2) А+Г=Т+Ц 3) А+Г/Т+Ц. Принцип комплементарности доказали в 1953г Криком и Уотсоном. Они, использовали метод рентген структ анализм, построили спираль- расшифровали структура ДНК.










Последнее изменение этой страницы: 2018-04-12; просмотров: 375.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...